paper:NEOMIR: A SPACE-BASED INFRARED MISSION FOR NEO DETECTION,
CHARACTERISATION AND EARLY WARNING
extension://bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https%3A%2F%2Fconference.sdo.esoc.esa.int%2Fproceedings%2Fneosst2%2Fpaper%2F116%2FNEOSST2-paper116.pdf
说明了9um对应的300K温度波段是最佳的,辐射最大,且没有背景恒星干扰,但是测轨不便,于是同时加入了5um波段
On the other hand, every asteroid will have an intrinsic
temperature that mostly depends on its distance from the
Sun. The surface temperature of an NEO will typically
be in the range 200-400 K: a black-body of 300 K has
its peak thermal emission at 9 μm, i.e. in the so-called
thermal infrared wavelength spectrum.
Another advantage of observing in this domain is that
most stars will not be visible, hence sensibly reducing
the confusion between asteroids and field stars. How-
ever, the absence of stars complicates the determination
of accurate astrometry. This can be solved by having a
second IR channel observing the same field-of-view as
the 9 μm channel but at shorter wavelengths, e.g. 5 μm,
where stars are still visible and available catalogues can
be used to improve the pointing knowledge.
这是TESS的不是NEO Surveyer
paper: Optical Design of the Camera for Transiting Exoplanet Survey
Satellite (TESS)
extension://bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https%3A%2F%2Fntrs.nasa.gov%2Fapi%2Fcitations%2F20150018419%2Fdownloads%2F20150018419.pdf
说明了相机的参数,以及杂散光指标要达到约10-7
这是NEO的
extension://bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https%3A%2F%2Fwww2.boulder.swri.edu%2F~bottke%2FReprints%2FMainzer_2023_Planet._Sci._J._4_224_NEO_Surveyor.pdf
The telescope optical system consists of a three-mirror
anastigmat design that provides a field of view of 1°. 68 × 7°.08
with no central obscuration, thus maximizing sensitivity and
eliminating diffraction spikes due to the secondary mirror
support structure. There is no focus mechanism; focus is set
through a series of measurements made on the ground at the
operating temperature that account for the deformation of the
optical system as it cools down. The same field of view is
imaged simultaneously by the two channels using a germanium
beamsplitter, with NC1 being reflected and NC2 transmitted
through the beamsplitter. Both channels utilize transmission
filters to define their bandpasses.
Each focal plane consists of a 4 × 1 array of 2048 × 2048
pixel HgCdTe detectors that are closely packed together to
minimize the gaps between individual arrays that can cause a
loss of moving-object detections and thus break links between
detections. The gap spacing between arrays is 2.4 mm for both
channels, with a plate scale of ∼3′′ per 18 μm pixel.
望远镜光学系统采用三镜消像散设计,提供1°.68 × 7°.08的视场角,无中心遮光,从而最大限度地提高灵敏度并消除由于次镜支撑结构而产生的衍射尖峰。没有对焦机制;焦点是通过在工作温度下在地面上进行的一系列测量来设置的,这些测量考虑了光学系统冷却时的变形。使用锗分束器,两个通道同时对同一视场进行成像,其中 NC1 被反射,NC2 通过分束器透射。两个通道都利用传输滤波器来定义其带通。每个焦平面由 2048 × 2048 像素 HgCdTe 探测器组成的 4 × 1 阵列组成,这些探测器紧密排列在一起,以最大限度地减少各个阵列之间的间隙,这些间隙可能导致移动物体检测丢失,从而破坏检测之间的链接。两个通道的阵列之间的间隙间距均为 2.4 mm,每 18 μm 像素的板尺寸为 ∼3 英寸。
由于视场覆盖的太阳经度范围很广,天文台的灵敏度在整个天空中有所不同。在 NC1 和 NC2 中,灵敏度主要由自然黄道背景决定,在 NC1 和 NC2 中,自然黄道背景的变化分别约为 20 倍和 10 倍。根据基于 DIRBE 测量的黄道背景模型,我们估计 NEO Surveyor 视野范围内的黄道背景范围为 NC1 ~220 至 4200 nW m−2 sr−1 和 NC2 ~1700 至 22,000 nW m−2 sr−1 (Leinert et al. 1998; Wright 1998)。由于我们计划提取信噪比为 5 或更大的点源,因此我们将灵敏度量化为噪声等效光谱辐照度的五倍(表示为 NESI5)。灵敏度计算考虑了 NEO Surveyor 仪器点扩散函数 (PSF) 的采样、两个通道的积分时间、望远镜入瞳面积、热自发射、杂散光、暗电流和其他参数。 NESI5 在整个关注领域进行计算,要求 NC1 通道中的范围为 65-120 μJy,NC2 通道中的范围为 110-280 μJy。